Skip to content
GitLab
Projects Groups Topics Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Register
  • Sign in
  • F fmstaffingsource
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributor statistics
    • Graph
    • Compare revisions
  • Issues 25
    • Issues 25
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Cruz Worth
  • fmstaffingsource
  • Issues
  • #19
Closed
Open
Issue created Feb 04, 2025 by Cruz Worth@cruzworth05115Owner

Artificial General Intelligence


Artificial general intelligence (AGI) is a type of expert system (AI) that matches or goes beyond human cognitive abilities across a wide variety of cognitive jobs. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly exceeds human cognitive abilities. AGI is thought about one of the definitions of strong AI.

Creating AGI is a primary goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research and advancement projects across 37 nations. [4]
The timeline for accomplishing AGI remains a subject of continuous argument among scientists and experts. As of 2023, some argue that it might be possible in years or decades; others preserve it may take a century or longer; a minority think it may never be attained; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has expressed issues about the rapid progress towards AGI, recommending it could be accomplished sooner than numerous anticipate. [7]
There is debate on the of AGI and regarding whether contemporary big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many professionals on AI have actually specified that alleviating the threat of human extinction posed by AGI ought to be a global concern. [14] [15] Others find the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology

AGI is likewise known as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]
Some scholastic sources book the term "strong AI" for computer programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one specific issue however lacks general cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as humans. [a]
Related principles include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is much more usually intelligent than people, [23] while the idea of transformative AI relates to AI having a big influence on society, for example, similar to the farming or commercial revolution. [24]
A structure for systemcheck-wiki.de classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For example, a proficient AGI is specified as an AI that exceeds 50% of competent grownups in a wide variety of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is likewise defined however with a threshold of 100%. They think about big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics

Various popular definitions of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular approaches. [b]
Intelligence qualities

Researchers normally hold that intelligence is required to do all of the following: [27]
factor, usage method, solve puzzles, and make judgments under uncertainty represent knowledge, including typical sense understanding strategy discover

  • communicate in natural language
  • if necessary, incorporate these abilities in conclusion of any given goal

Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider extra traits such as imagination (the capability to form unique psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that display a lot of these abilities exist (e.g. see computational creativity, automated reasoning, decision support group, robot, evolutionary calculation, smart agent). There is argument about whether contemporary AI systems possess them to a sufficient degree.

Physical characteristics

Other abilities are thought about desirable in smart systems, as they may affect intelligence or aid in its expression. These include: [30]
- the ability to sense (e.g. see, hear, etc), and - the capability to act (e.g. relocation and control items, modification area to explore, and so on).
This includes the capability to identify and react to risk. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and control things, modification area to explore, and so on) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) might currently be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system is sufficient, offered it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has never ever been proscribed a particular physical personification and thus does not demand a capability for mobility or fraternityofshadows.com standard "eyes and ears". [32]
Tests for human-level AGI

Several tests indicated to verify human-level AGI have actually been thought about, consisting of: [33] [34]
The concept of the test is that the device needs to try and pretend to be a man, by answering questions put to it, and it will only pass if the pretence is fairly persuading. A significant part of a jury, who must not be professional about machines, should be taken in by the pretence. [37]
AI-complete issues

A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would require to execute AGI, because the service is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of problems that have been conjectured to need basic intelligence to resolve in addition to human beings. Examples include computer system vision, natural language understanding, and dealing with unforeseen situations while resolving any real-world problem. [48] Even a particular job like translation needs a machine to read and write in both languages, follow the author's argument (factor), comprehend the context (knowledge), and consistently reproduce the author's original intent (social intelligence). All of these issues need to be fixed concurrently in order to reach human-level device efficiency.

However, a number of these jobs can now be performed by contemporary big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on lots of criteria for reading comprehension and visual reasoning. [49]
History

Classical AI

Modern AI research study began in the mid-1950s. [50] The very first generation of AI scientists were convinced that synthetic general intelligence was possible which it would exist in just a few decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could create by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the job of making HAL 9000 as reasonable as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the problem of producing 'synthetic intelligence' will substantially be solved". [54]
Several classical AI projects, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar task, were directed at AGI.

However, in the early 1970s, it became apparent that researchers had grossly underestimated the problem of the job. Funding firms became skeptical of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a casual discussion". [58] In reaction to this and the success of expert systems, both industry and government pumped cash into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever satisfied. [60] For the second time in 20 years, AI researchers who forecasted the impending accomplishment of AGI had actually been mistaken. By the 1990s, AI researchers had a credibility for making vain pledges. They ended up being reluctant to make forecasts at all [d] and avoided reference of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study

In the 1990s and early 21st century, mainstream AI attained industrial success and academic respectability by concentrating on particular sub-problems where AI can produce proven results and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research in this vein is greatly moneyed in both academia and market. Since 2018 [update], development in this field was considered an emerging trend, and a mature phase was expected to be reached in more than ten years. [64]
At the turn of the century, numerous traditional AI researchers [65] hoped that strong AI might be established by combining programs that fix various sub-problems. Hans Moravec composed in 1988:

I am positive that this bottom-up route to synthetic intelligence will one day satisfy the conventional top-down route more than half way, prepared to supply the real-world proficiency and the commonsense knowledge that has been so frustratingly elusive in reasoning programs. Fully intelligent makers will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:

The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are legitimate, then this expectation is hopelessly modular and there is truly only one viable route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, because it appears arriving would simply total up to uprooting our signs from their intrinsic meanings (consequently simply decreasing ourselves to the practical equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research study

The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to satisfy objectives in a broad variety of environments". [68] This kind of AGI, defined by the capability to increase a mathematical meaning of intelligence instead of show human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor speakers.

As of 2023 [upgrade], a little number of computer scientists are active in AGI research study, and numerous add to a series of AGI conferences. However, significantly more researchers are interested in open-ended knowing, [76] [77] which is the concept of allowing AI to continuously discover and innovate like human beings do.

Feasibility

Since 2023, the development and prospective accomplishment of AGI remains a topic of extreme argument within the AI community. While standard agreement held that AGI was a far-off objective, recent improvements have actually led some scientists and market figures to claim that early kinds of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century because it would require "unforeseeable and fundamentally unpredictable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between contemporary computing and human-level expert system is as wide as the gulf between present space flight and useful faster-than-light spaceflight. [80]
An additional obstacle is the absence of clarity in defining what intelligence requires. Does it require awareness? Must it display the ability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding required? Does intelligence require explicitly duplicating the brain and its particular professors? Does it need feelings? [81]
Most AI researchers believe strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, however that the present level of development is such that a date can not properly be anticipated. [84] AI professionals' views on the feasibility of AGI wax and wane. Four surveys conducted in 2012 and 2013 recommended that the mean price quote amongst specialists for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% responded to with "never" when asked the very same concern but with a 90% confidence rather. [85] [86] Further present AGI progress considerations can be found above Tests for validating human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists released an in-depth examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we think that it might fairly be considered as an early (yet still incomplete) version of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of general intelligence has currently been accomplished with frontier models. They composed that reluctance to this view originates from four main reasons: a "healthy hesitation about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 also marked the introduction of large multimodal models (big language models efficient in processing or producing several modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of models that "invest more time believing before they respond". According to Mira Murati, this capability to think before reacting represents a new, extra paradigm. It improves design outputs by investing more computing power when creating the response, whereas the design scaling paradigm improves outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had attained AGI, mentioning, "In my opinion, we have actually currently attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than many human beings at many jobs." He likewise addressed criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their learning process to the clinical technique of observing, assuming, and validating. These statements have stimulated dispute, as they count on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate exceptional versatility, they might not totally satisfy this standard. Notably, Kazemi's remarks came quickly after OpenAI eliminated "AGI" from the regards to its collaboration with Microsoft, prompting speculation about the company's tactical objectives. [95]
Timescales

Progress in expert system has historically gone through durations of fast progress separated by periods when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to create space for additional development. [82] [98] [99] For instance, the hardware available in the twentieth century was not adequate to execute deep learning, which needs big numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that price quotes of the time needed before a really flexible AGI is constructed vary from ten years to over a century. As of 2007 [upgrade], the agreement in the AGI research community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually offered a large range of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards forecasting that the beginning of AGI would occur within 16-26 years for modern-day and historical predictions alike. That paper has been slammed for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the conventional method used a weighted sum of scores from different pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the existing deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old child in first grade. A grownup pertains to about 100 on average. Similar tests were carried out in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design efficient in performing numerous diverse tasks without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to comply with their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 different jobs. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, competing that it showed more general intelligence than previous AI designs and demonstrated human-level performance in jobs covering multiple domains, such as mathematics, coding, and law. This research study triggered a debate on whether GPT-4 might be considered an early, insufficient variation of artificial general intelligence, highlighting the requirement for further exploration and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The idea that this stuff could actually get smarter than people - a couple of people thought that, [...] But a lot of people thought it was method off. And I believed it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.

In May 2023, Demis Hassabis likewise stated that "The progress in the last few years has actually been pretty incredible", which he sees no reason that it would slow down, anticipating AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would be capable of passing any test a minimum of as well as humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI worker, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation

While the advancement of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] entire brain emulation can work as an alternative approach. With entire brain simulation, a brain model is built by scanning and mapping a biological brain in information, and after that copying and simulating it on a computer system or another computational gadget. The simulation model need to be sufficiently loyal to the original, so that it acts in virtually the same method as the original brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been discussed in expert system research study [103] as a technique to strong AI. Neuroimaging technologies that might provide the necessary in-depth understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will become available on a comparable timescale to the computing power needed to imitate it.

Early approximates

For low-level brain simulation, a very effective cluster of computers or GPUs would be required, given the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different price quotes for the hardware needed to equal the human brain and embraced a figure of 1016 calculations per second (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a measure utilized to rate existing supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was attained in 2022.) He utilized this figure to anticipate the required hardware would be available sometime in between 2015 and 2025, if the exponential growth in computer power at the time of writing continued.

Current research

The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually established an especially comprehensive and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.

Criticisms of simulation-based techniques

The artificial nerve cell design presumed by Kurzweil and utilized in many present synthetic neural network implementations is easy compared to biological nerve cells. A brain simulation would likely have to catch the detailed cellular behaviour of biological nerve cells, presently comprehended only in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers a number of orders of magnitude bigger than Kurzweil's price quote. In addition, the estimates do not account for glial cells, which are known to play a function in cognitive processes. [125]
An essential criticism of the simulated brain approach stems from embodied cognition theory which asserts that human personification is a necessary element of human intelligence and is essential to ground significance. [126] [127] If this theory is correct, any totally functional brain design will need to encompass more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unidentified whether this would suffice.

Philosophical viewpoint

"Strong AI" as specified in philosophy

In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (just) imitate it thinks and has a mind and consciousness.
The very first one he called "strong" due to the fact that it makes a more powerful declaration: it assumes something special has actually taken place to the device that exceeds those capabilities that we can check. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" machine, but the latter would also have subjective mindful experience. This usage is also common in scholastic AI research study and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level artificial general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is required for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most artificial intelligence researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it actually has mind - indeed, there would be no other way to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two different things.

Consciousness

Consciousness can have various meanings, and some elements play substantial functions in science fiction and the principles of expert system:

Sentience (or "remarkable consciousness"): The ability to "feel" understandings or emotions subjectively, as opposed to the ability to factor about understandings. Some thinkers, such as David Chalmers, use the term "consciousness" to refer specifically to extraordinary awareness, which is approximately comparable to life. [132] Determining why and how subjective experience arises is understood as the difficult issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not mindful, then it does not feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually achieved life, though this claim was extensively challenged by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a different individual, particularly to be knowingly conscious of one's own ideas. This is opposed to simply being the "subject of one's believed"-an os or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the same way it represents everything else)-but this is not what people usually suggest when they use the term "self-awareness". [g]
These traits have an ethical measurement. AI sentience would trigger concerns of well-being and legal defense, likewise to animals. [136] Other elements of consciousness related to cognitive capabilities are likewise relevant to the concept of AI rights. [137] Finding out how to integrate sophisticated AI with existing legal and social structures is an emerging issue. [138]
Benefits

AGI might have a wide range of applications. If oriented towards such objectives, AGI might help alleviate different issues in the world such as hunger, hardship and health issue. [139]
AGI could improve performance and effectiveness in many jobs. For example, in public health, AGI might accelerate medical research, especially versus cancer. [140] It might look after the elderly, [141] and equalize access to quick, top quality medical diagnostics. It could offer fun, cheap and personalized education. [141] The requirement to work to subsist could become obsolete if the wealth produced is correctly rearranged. [141] [142] This likewise raises the question of the location of people in a drastically automated society.

AGI could also assist to make logical choices, and to prepare for and prevent disasters. It might likewise help to enjoy the benefits of potentially catastrophic innovations such as nanotechnology or climate engineering, while avoiding the associated threats. [143] If an AGI's primary objective is to prevent existential disasters such as human termination (which could be hard if the Vulnerable World Hypothesis ends up being real), [144] it might take measures to significantly decrease the risks [143] while lessening the effect of these procedures on our lifestyle.

Risks

Existential threats

AGI may represent several kinds of existential risk, which are dangers that threaten "the premature termination of Earth-originating intelligent life or the permanent and extreme destruction of its potential for desirable future development". [145] The danger of human extinction from AGI has been the subject of lots of arguments, however there is also the possibility that the advancement of AGI would lead to a completely flawed future. Notably, it could be utilized to spread and maintain the set of worths of whoever establishes it. If humankind still has moral blind areas comparable to slavery in the past, AGI might irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might facilitate mass security and brainwashing, which might be utilized to create a stable repressive worldwide totalitarian regime. [147] [148] There is also a risk for the devices themselves. If makers that are sentient or otherwise worthwhile of ethical consideration are mass developed in the future, participating in a civilizational path that forever disregards their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI could enhance humankind's future and help in reducing other existential dangers, Toby Ord calls these existential risks "an argument for continuing with due caution", not for "abandoning AI". [147]
Risk of loss of control and human termination

The thesis that AI presents an existential threat for humans, which this danger needs more attention, is controversial however has actually been endorsed in 2023 by many public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized prevalent indifference:

So, facing possible futures of incalculable advantages and risks, the specialists are surely doing everything possible to ensure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll show up in a couple of decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The potential fate of humanity has actually often been compared to the fate of gorillas threatened by human activities. The contrast states that greater intelligence permitted mankind to dominate gorillas, which are now susceptible in manner ins which they could not have actually anticipated. As an outcome, the gorilla has become a threatened species, not out of malice, however just as a collateral damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control mankind and that we ought to take care not to anthropomorphize them and analyze their intents as we would for human beings. He said that individuals will not be "clever enough to develop super-intelligent machines, yet unbelievably dumb to the point of offering it moronic goals without any safeguards". [155] On the other side, the principle of crucial convergence suggests that almost whatever their objectives, intelligent representatives will have reasons to attempt to survive and acquire more power as intermediary steps to accomplishing these objectives. Which this does not require having feelings. [156]
Many scholars who are worried about existential risk supporter for more research into resolving the "control issue" to respond to the concern: what kinds of safeguards, algorithms, or architectures can developers carry out to increase the possibility that their recursively-improving AI would continue to behave in a friendly, rather than destructive, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could lead to a race to the bottom of safety precautions in order to launch items before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can position existential threat also has critics. Skeptics generally state that AGI is not likely in the short-term, or that issues about AGI distract from other problems connected to existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for numerous people outside of the innovation industry, existing chatbots and LLMs are already viewed as though they were AGI, leading to further misunderstanding and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an unreasonable belief in a supreme God. [163] Some researchers think that the interaction campaigns on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and researchers, issued a joint statement asserting that "Mitigating the danger of extinction from AI ought to be a worldwide concern alongside other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment

Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers might see at least 50% of their tasks impacted". [166] [167] They consider office employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a better autonomy, ability to make decisions, to interface with other computer tools, but also to manage robotized bodies.

According to Stephen Hawking, the result of automation on the quality of life will depend upon how the wealth will be rearranged: [142]
Everyone can delight in a life of luxurious leisure if the machine-produced wealth is shared, or many people can end up badly bad if the machine-owners successfully lobby versus wealth redistribution. So far, the trend seems to be toward the 2nd option, with technology driving ever-increasing inequality

Elon Musk considers that the automation of society will need governments to embrace a universal basic earnings. [168]
See likewise

Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI result AI safety - Research area on making AI safe and helpful AI positioning - AI conformance to the intended objective A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated machine learning - Process of automating the application of maker learning BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of expert system to play different games Generative expert system - AI system efficient in creating material in action to prompts Human Brain Project - Scientific research study job Intelligence amplification - Use of info innovation to enhance human intelligence (IA). Machine ethics - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task learning - Solving multiple machine finding out tasks at the very same time. Neural scaling law - Statistical law in artificial intelligence. Outline of artificial intelligence - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or form of synthetic intelligence. Transfer knowing - Artificial intelligence strategy. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specially developed and enhanced for artificial intelligence. Weak expert system - Form of expert system.
Notes

^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the short article Chinese room. ^ AI creator John McCarthy writes: "we can not yet define in general what kinds of computational treatments we want to call smart. " [26] (For a conversation of some definitions of intelligence utilized by expert system scientists, see viewpoint of synthetic intelligence.). ^ The Lighthill report particularly criticized AI's "grandiose objectives" and led the taking apart of AI research study in England. [55] In the U.S., DARPA ended up being figured out to fund only "mission-oriented direct research study, instead of fundamental undirected research". [56] [57] ^ As AI creator John McCarthy writes "it would be a fantastic relief to the rest of the workers in AI if the innovators of brand-new basic formalisms would reveal their hopes in a more secured type than has actually sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a standard AI book: "The assertion that machines could perhaps act smartly (or, kenpoguy.com perhaps better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are actually believing (rather than mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that synthetic general intelligence benefits all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020. ^ a b c "AI timelines: What do professionals in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton quits Google and alerts of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real danger is not AI itself however the method we deploy it. ^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential dangers to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that mankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of termination from AI ought to be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals caution of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no reason to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on all of us to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based upon the subjects covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of tough tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers prevented the term artificial intelligence for fear of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite progress in machine intelligence, artificial basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of professional viewpoint. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the consensus is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A developer built an AI chatbot using GPT-3 that helped a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, from playing games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'just a couple of years,' says CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research study, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (estimated in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.


^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate inquiry states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of artificial intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard positioned however synthetic intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI termination danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: wiki.myamens.com An early appearance at the labor market impact capacity of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees could see their jobs impacted by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal basic earnings due to the fact that 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer system programs that can solve issues and attain goals worldwide in addition to people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system easy sufficient to be reasonable will not be made complex enough to behave intelligently, while any system complicated enough to act wisely will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic dumb. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological animals, factor and purpose originate from acting worldwide and experiencing the repercussions. Expert systems - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who want to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on governments driven by project finance contributions [from tech business] to push back.' ... Marcus information the demands that citizens should make from their governments and the tech business. They include openness on how AI systems work; settlement for people if their information [are] utilized to train LLMs (big language design) s and the right to approval to this use; and the capability to hold tech companies liable for the damages they trigger by getting rid of Section 230, enforcing money penalites, macphersonwiki.mywikis.wiki and passing stricter product liability laws ... Marcus likewise recommends ... that a brand-new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] an expert licensing routine for engineers that would operate in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medication. 'What if, like doctors,' she asks ..., 'AI engineers likewise pledged to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: utahsyardsale.com The literary puzzle Cain's Jawbone, which has actually stymied humans for decades, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has actually exposed that although NLP (natural-language processing) designs are capable of incredible feats, their capabilities are quite limited by the quantity of context they get. This [...] could trigger [troubles] for scientists who wish to use them to do things such as analyze ancient languages. In some cases, there are couple of historical records on long-gone civilizations to serve as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce fake videos equivalent from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate reasonable videos produced utilizing synthetic intelligence that in fact trick people, then they barely exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their role better looks like that of animations, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning designs used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: wiki-tb-service.com Even the latest, buzziest systems of synthetic general intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed not able to factor logically and tried to count on its large database of ... truths originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however unreliable. Rules-based systems can not deal with situations their developers did not anticipate. Learning systems are restricted by the information on which they were trained. AI failures have already resulted in catastrophe. Advanced autopilot features in cars, although they perform well in some scenarios, have actually driven cars and trucks without warning into trucks, concrete barriers, and parked automobiles. In the incorrect situation, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to control and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new technologies but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.
Assignee
Assign to
Time tracking